BIODIVERSITY AND PROBLEMS OF CONSERVATION

C KAMESWARA RAO

Foundation for Biotechnology Awareness and Education
Bangalore 560 004

    The  term  'Biodiversity'  is the short  form  of  Biological diversity,   used  to  convey  the  total  number,  variety   and variability of living organisms in a given area, whether be it on land, in rivers and fresh water bodies, and the seas or the whole surface of the earth.   Biodiversity embraces the whole of  life, and  includes  all the micro-organisms, plants  and  animals,  on earth.    Biodiversity also refers to and includes the  genes  of organisms,  the  ecosystems they live in and  the  services  they provide  to  keep  the planet  healthy.    The  term  'biological resources'   denotes  those  components  of  biodiversity   which maintain the current or potential human uses.

1. THE GENESIS OF A GLOBAL PLAN OF ACTION ON BIODIVERSITY

     Biodiversity  and  related issues are now a  serious  global concern.      An awareness of the issues involved is  not  really new, though the urgency for action was driven home in stages,  as briefed below:

   a)    UN  Conference  at  Stockholm  in  June  1972  and   the Declaration on the Human Environment;

   b)   United  Nations' Environment Programme (UNEP)  of   1991, setting    i)   priorities  for  action  for   conservation   and sustainable  use  of biodiversity and agenda for  scientific  and technological  research;  b) evaluation of economic  implications of  conservation  of biodiversity and its  sustainable  use,  and evaluation  of biological and genetic resources;  c)  technology transfer and financial issues;  and  d) modalities of a  protocol for  transfer  and  handling of  any  living  modified  organisms through biotechnology;

   c)  The  Earth  Summit (or UN Conference  on  Environment  and Development)  at  Rio de Janeiro, June 1992, where  the  document 'Agenda   21',  that  defined  the  programme  for   biodiversity estimation,  conservation, sustainable use, involvement of  local populations  and  their  interests,  etc.,  was  adopted  by  178 Governments  of  the  world nations  (Anonymous.   1993).    This document  is organised under 27 Principles and covers all  issues concerning  biodiversity.   Although the Governments have been  a party to the document, action in the respective countries can  be taken  only when legislative measures, through different Acts  of Government,  are  available.   Progress in this regard  has  been patchy.   Nevertheless, there is the much needed awareness of the issues involved.   

2. COMPONENTS OF BIODIVERSITY

     Biodiversity  is  usually classified into  three  categories that represent three fundamental and related levels of biological organisation:  a) Ecosystem Diversity,  b) Species Diversity  and c) Genetic Diversity.

3. ECOSYSTEM DIVERSITY

     An  ecosystem  is  a natural unit  consisting  of  nonliving (abiotic) and living (biotic)  components  occurring together  in nature, which interact to produce a stable system.   A forest,  a grassland,  a  pond, and a desert, are  examples  of  ecosystems.   The abiotic component consists of the soil, the water and the air whose  physical  and chemical properties  sustain  and/or  affect life.   The biotic component of an ecosystem is formed of  living organisms.    Functionally these may be producers,  consumers  or decomposers or a combination of these.   All the components of an ecosystem  are  subject  to variability  and in  turn  alter  the composition and nature of the ecosystem.

     Ecosystem  diversity  relates to the  variety  of  habitats, biotic  communities and ecological processes in the biosphere  as well  as  the  diversity  within  ecosystems.  It  is   generally concerned with the principal biogeographic regions and habitats.

     Ecosystem diversity can be described at the following levels and scales:

      a)  Functional  diversity:   the  relative  abundance  of   functionally different kinds of organisms;  

      b)  Community diversity: the numerical sizes  and  spatial  distribution  of  communities of  organisms,  which  is  often referred to as patchiness;   and

      c)  Landscape  diversity:    the diversity  of  scales  of  patchiness.

     Reid  and  Miller (1989) suggested six  rules  of  ecosystem dynamics  which  link  environmental  changes,  biodiversity  and ecosystem processes:

     i) the number and kinds of species that make up  communities    and ecosystem;  change constantly and continuously;

    ii) species    diversity   increases   as   the environmental   heterogeneity  or  patchiness  of  a  habitat  does,  but   increasing habitat patchiness does not necessarily result    in increased species richness;

   iii) habitat patchiness influences not only the composition of   species in an ecosystem,  but also the interaction  among  the species;

    iv) periodic disturbances play an important role in creating the patchy environments that foster high species richness and  help to keep an array of habitat patches in  various  states of succession of vegetation and fauna;
    
     v) both  the  size and isolation  of  habitat  patches  can       influence  species  richness which is also influenced  by the   extent  of  transition  zones  (ecotones)   between  habitats;   and

    vi) certain species (keystone species) have  disproportionate    influences  on the characteristics of an ecosystem  which may  be  transformed or undermined by the loss  of  these  species.

      The  relationships of ecosystems, both within and  between, are  very  complex,  sensitive to changes  and  have  a  profound influence on the other two levels of biodiversity.

4. SPECIES DIVERSITY

     Species  diversity represents the numbers and the degree  of variability  of  families, genera and  species.    However,  only species  richness comes to be regarded for purposes of  measuring species diversity. 

     Species  are  now generally regarded as  populations  within which  gene  flow  occurs under  natural  conditions.    By  this definition,  the members of one species do not interbreed  freely and  do not produce fertile offspring, with the members of  other species.   New species originate due to a variety of causes which determine their structure  and reproductive behaviour.   For this reason,  no  single  definition  of  a  species  is   universally applicable.    The concept of species is one of the much  debated and inconclusive issues in biology.

     The  exact number of species of all living organisms is  not known, even approximately.   About 2,75,000 species of  flowering plants   are   scientifically  known  and  some   estimates   (or guesstimates)  indicate  that  an  equal  number  of  species  of flowering  plants  awaits scientific discovery.    Wilson  (1988) estimated  that  the  number of species of  all  organisms  falls between  5  and 30 million.   A recent estimate  puts  the  known species  at  a  little  over 1.4  million  (Gadgil,  1996).    At present, probably about 1.5 million species of all organisms have been scientifically described and named.   A far greater lot more is  yet  to be known to science.   Ignorance, is thus  the  basic cause  for the enormity and insolvability of several  aspects  of the species problem.

     Habitat variability promotes species richness.   Wide ranges of  distribution result in genetic diversity.   In comparison  to the temperate parts of the world, the tropical regions harbour  a vast  range of biodiversity.   The global  distribution  patterns indicate   that   species  richness  decreases   with   latitude.   Diversity  also  decreases with increasing   altitude.    In  the marine habitats, diversity negatively correlates with depth.

5. GENETIC DIVERSITY

     Genetic  diversity  is  the amount  of  genetic  variability occurring  within  a species, which is the sum total  of  genetic information contained in the genes of all individual organisms of that   species.     This  is  the  most   important   aspect   of biodiversity.

     Some  amount of genetic diversity is readily discernible  in the form of visible differences in the expression of a particular character.    The  medicinally important  species,   Catharanthus roseus has usually pink flowers but a white flowered variety also occurs  along with the pink flowered variety.   In  this  species,  the  flower  colour is also associated with the  distribution  of anthocyanin (the pink pigment) on the vegetative parts.   Another example  is Clitoria ternatea where both blue and white  flowered varieties coexist.   Such visibly apparent variability may or may not  have  a  genetic basis, as some variability  is  due  to  an interaction  of  the same genotype with different  types  of  the environment,  (phenotypic  plasticity).    Live  plants  of   the 'black'  variety  of the sacred basil (Ocimum  sanctum,   krishna tulasi),  collected  from the Western Ghats, became  green  in  a couple of months at Bangalore, on profuse watering.   Some amount of  variability  is  due  to  the  differences  in  the   genetic constitution of individuals/populations of a species.   Such gene based  variability  is faithfully transmitted to  the  subsequent generations.   Only this gene based  variability is important  in issues of biodiversity.

     One  complete  set  of  all genes  of  an  organism  is  its 'genome'.   In prokaryotic organisms (such as bacteria)  there is only one set of genes while in most others (eukaryotes) there are two (in some more than two) sets of genes.   The number of  genes in  an  organism is widely variable.   Some bacteria  have  about 1,000 genes, the yeast (Saccharomyces cervisiae) has 6,100  genes  and  while up to 40,000 genes are known in some flowering  plants.   The  number  of genes in man is about 1,30,000,  involving  about three billion nucleotides in 46 chromosomes.   The total  genetic component  of a species is represented by all of the  individuals of  that species in the entire world constitutes its  gene  pool.   Virtually no two individuals of the same species are 100 per cent genetically  identical.    For  this reason, it  is  possible  to identify  individuals by DNA finger printing, as for example,  in paternity disputes or forensic issues.  

     The  magnitude  and  importance  of  genetic  diversity  was brought  to  light  mostly  by  studies   on  cultivated  plants.   Existing  varieties  in cultivation were  selected  for  specific characters  that are of benefit to us.   A far greater amount  of genetic  diversity  is  submerged  under  heterozygosity  in  the cultivated   species.    Repeated  selfing  has  thrown   up   an unimaginably wide range of recessive characters in several  crop plants  like rice, bajra, sorghum and others.   Since we  do  not know  which  of these genetic traits will be  useful  in  future, perhaps  even more useful than the characters that are  presently valued,  it  is  felt necessary that the  gene  pools  should  be conserved.

     Genetic   diversity   often   falls   into   patterns   that characterise  subgroups,  within a species , which have  distinct economically  valued  traits.   A number of  crop  plant  species have,  in  addition to the  scientifically  recognised  varieties (cultivars),  a  large  number  of  local  genetically  different variants     over    the    range    of    their     geographical distribution/cultivation.   These are, often ambiguously,  called races or land races, occur in an inestimably large numbers in the case  of  the widely cultivated crops like  rice,  wheat,  bajra, jowar,  etc.    The enormity of the problem in  handling  genetic variability should be evident from the existence of over 1,00,000 varieties  of rice, over 15,000 varieties of the common bean  and 12,000  of the potato.    The genetic  variability of  cultivated species/varieties  and  their wild relatives,  together  forms  a continued  basic supply of traits for breeding new  and  improved varieties  and   for this reason these are  called  the  'genetic resources'  of a country/region.   A similar  situation,  largely unexplored   and  unexploited,    though  may  be  of  a   lesser magnitude,  exists  also in other plant  species,  including  the medicinally important ones.

     In   the  case  of  medicinal  plants,  it  is  known   that populations of a particular species from certain localities  have been traditionally preferred.  There are no systematic studies on medicinal plants with reference to gene based differences in  the production  of therapeutically active chemical constituents,  but there  are several indications.   For example, a  therapeutically useful  lectin (a specific class of protein, detailed in a  later chapter)  from the seed of Jack fruit (Artocarpus  heterophyllus) showed 2,500 times more activity in a sample from Bangalore, than in a sample  from Madras (Hunter, 1986).   This is one aspect  of chemical  diversity, a component of genetic diversity.    Studies on  chemical  diversity, both quantitative  and  qualitative,  on medicinal plants are largely absent and very much needed.

     In view of these considerations, it seems necessary that  at least  the important and the more commonly used medicinal  plants are  studied  systematically  with  reference  to  their  genetic diversity.

6. TAXONOMY AND DIVERSITY OF PLANTS

     May  (1990)  wrote that "without taxonomy to give  shape  to bricks  and systematics to tell us how to put them together,  the house of biological science is a meaningless jumble".    Taxonomy is the foundation of the study of biodiversity.

     Work  on  the exploration of genetic  resources   of  useful plants, their evaluation  and  conservation  require  a  sound  foundation   of taxonomy.    In fact, all the work that now forms the  foundation of  biodiversity  studies was the  contribution  of  taxonomists.   The   taxonomist  with  his  eye  for   character   distribution, expression   and  variation,  would  contribute  immensely  to  a rational   classification  and  conservation  of   diversity   of  plants.   We seem to know very little of the  taxonomy of  several taxa with wide ranging uses.    Even  those species, that are widely cultivated for use as food, are also not very well understood.   Curcuma,  Zingiber, Colocasia,  Amorphophallus,  and  several others  (most  of  them vegetatively propagated for their economically useful  vegetative parts)  have  been  cited  in this regard for  190  years  or  so (Humboldt,  1807;  Hawkes, 1978).   Still these taxa  badly  need the  serious attention of a taxonomist.  

     In  general, a large number of species of plants in India require a  thorough taxonomic  handling a) for their accurate  botanical  description and  taxonomic determination, and b) to understand the  magnitude of  their diversity and usefulness, and c) to determine the  need for and extent of conservation.

7.  LOSS OF BIODIVERSITY

     There  has been a rapid decline in the biodiversity  of  the world,  more  particularly  during the past two  decades  or  so.   Biodiversity   losses  have  been  alarming  in  the   developing countries  in the tropics.   For example, in the Uttara  Kannada district  of Karnataka, the forest area has come down from  8,000 sq  km to 6,000 sq km, in about 40 years (Potter,  1996).    This constitutes an enormous loss of biodiversity in a small area over a  short period of time.   There are innumerable  such  examples, the world over.   The underdeveloped countries are generally less aware  of the degree of biodiversity loss in their countries  and  its consequences.

     Biodiversity  losses occur due to habitat destruction,  over harvesting,  pollution,  inappropriate  and   often   accidental, introduction   of  exotic  plants  and  animals,  etc.    Habitat destruction  is often related to development projects  like  land conversion,  construction  of dams, etc.   Biodiversity  is  also lost  due  to sudden natural calamities  like  floods,  cyclones, hurricanes, earth quakes, etc.   Conservation of biodiversity  is one  of  the paramount concerns the  world  over.    Governments, nongovernmental   organisations  (NGOs),  scientists,   are   all preoccupied  with  the  problem of devising  ways  and  means  of conserving biodiversity, or at least retarding the rapid rate  of its loss.  

8. ESTIMATES OF BIODIVERSITY LOSS

     There  have  been several estimates and projections  of  the loss of world's biodiversity.   Since most of habitat destruction is  through  human  activities,  these  are  the  basis  of  most calculations. 

     Of  an  estimated 17,444,300 square  kilo meters  of  primary vegetation  in 25 of the world's hotspots (explained  later  on), only  2,122,891  square  kilo meters  of  vegetation  exists  now, constituting  12.5 per cent of the original vegetation (Myers  et al.,  2000).    This  is  one  dimension  of  the  magnitude   of biodiversity loss.  

     Pimm  and  Raven (2000) concluded that if  no  hotspots  are saved, at the current rates of tropical forest extinction,  about 50,000  species per million will be lost by 2060 CE.   There  are some hotspots currently under protection.   If these are saved as they are now, by 2010 CE about 30,000 species per million will be lost  and  the  rate of loss will slowly decline.    If  all  the hotspots  are  saved, which does not seem possible,  the  current rate  of  species loss of about 18,000 species per  million  will decline.  The  rates  of decline are related not  merely  to  the actual rate of decline but also to the fact that fewer and  fewer species will be left, decade after decade, to be lost.

     Myers  et  al.,  (2000) estimated  that  the  protection  of species  at risk would cost about US$ 20 million per hotspot  per year, over the next five years and so US$ 500 million,  annually, for  the 25 hotspots now identified.   Another estimate  suggests US$ 300 billion annually (James et al., 1999) and when  subsidies on  different  accounts are added it is about US$  1.5  trillion, annually, world-wide (Myers, 1999).

     Since in many parts of the world, it is not adequately known as  to the kind and extent of biodiversity that exists  and  that requires  protection,  it  is also necessary  to  conduct  status surveys.    It  has been estimated that it requires about  US$  3 billion, and 150 years of time, just to draw up a list of life in the world (Donellan, 1995).   With India harbouring a fairly large share of the world's biodiversity (about one sixth), at least US$ 50 million would be needed to list the plants and animal  species in India.

9. HOTSPOTS OF BIODIVERSITY

     Hotspots  are areas featuring exceptional concentrations  of endemic  species  and experiencing exceptional  loss  of  habitat (Myers,  1988; Myers et al., 2000).   

     Endemic  species (genera, families) are restricted in  their geographical  distribution  to  defined areas and  do  not  occur outside  these areas, in their native state.   Most endemics  are not economically important.   The endemic status of species of  a particular  area should be periodically reviewed, in order to  be certain.  

     To  qualify to the list of hotspots, an area should have  at least  0.5  per  cent of all species  of  plants  world-wide,  as endemics.      Hotspots  are  also  identified,  by  some   other researchers,  on the basis of richness of rare  or  taxonomically unusual  species,  in the areas under  threat.    Recognition  of hotspots is a pre-requisite to identify areas whose  biodiversity needs urgent measures of protection. 

    Earlier,  Myers  (1988,  1990) had  recognised  18  hotspots.   These  have now been increased to 25 (Myers et al., 2000),  which harbour  44 per cent of all endemic species of  plants  (300,000) and 35 per cent of all endemic vertebrates (27,298). 
    
     Among the 25 hotspots of the world, the Western Ghats  along with Sri Lanka, and the Eastern Himalayas and the Andaman-Nicobar islands, along with the Indo-Burma regime, have been  recognised, as  the  two megadiversity hotspots of India.   These  two  areas also figure in the list of eight hottest hotspots (Myers et  al., 2000).
    
     The following 24 areas, often termed as the  micro-hotspots, have  also  been  identified  in  India:    Andamans,   Nicobars, Agasthyar  hills, Annamalai hills, Nilgiri-Silent  valley,  Palni hills,  Shimoga-Kanara,  Mahabaleshwar, Konkan,  Satpura  ranges, Tirupathi  hills, Visakhapatnam hills, Deccan hills,  Chotanagpur plateau,  Kutch, Aravalli hills, Khasia-Jainitia  hills,  Patkoi-Lushai  hills,  Cachar-Mikir  hills,  Arunachal  Pradesh,  Sikkim Himalayas,   Garhwal  Himalayas,  Lahul  Himalayas  and   Kashmir Himalayas.    Some  of these areas are a part of the  two  Indian hotspots recognised by Myers et al., (2000), but the rest need to be  carefully  evaluated, as emotional compulsions often  do  not meet with scientific criteria.

     So long as no serious conservation measures are implemented, a  mere recognition of hotspots does not serve any purpose.    We need to gather a huge lot and range of basic information in order to  make our conservation programmes successful.   In most  cases we  do  not  even know what species occur in  a  specified  area.   Although a considerable lot of taxonomic work was carried out  in India,  a  sad  but largely true comment  that  applies  to  many floristic  works, is that they are based on 'road side  surveys'.   There is an urgent need for a systematic and through study of the recognised hotspot areas.

     The  Indian Subcontinent Plant Specialist Group of the  SSC, which  met in January 1998, resolved that the most urgent  action in  the  conservation of the Indian flora, is to  conduct  status surveys   to  identify  the  species  that  need  protection   by conservation.

10. PROTECTED AREAS

     Defined areas, such as hotspots, totally protected from  all activity and interference, have often been suggested as a measure of  effective conservation.   Sacred Groves (devara kaadu;  God's forest) are cited as models in this context.   Sacred Groves  are patches  of  vegetation  of  various  dimensions  and  antiquity, attached  to temples and temple lands, and protected on the  fear of  God,  from all kinds of activity and exploitation,  for  very long   periods  of  time.    Sacred  Groves,  more  frequent   in Maharashtra,   Madhya  Pradesh,  Tamil  Nadu  and  Kerala,   than elsewhere, often have shown a vegetational composition  different from  outside  the protected site in the same  area.    Even  new species  have  been reported from Sacred Groves, as  for  example Kunstleria keralensis.   In the absence of data from the time  of inception of the Sacred Groves till now, to compare the floristic and  other changes in these areas, comparison and  assessment  of the  real  benefits of cardoning off of  vegetational  areas  are difficult.   Even when an area is cardoned off to protect it from outside  influences, a certain amount of biodiversity is lost  in course of time and some amount of new diversity will show up, due to  an  interaction of internal factors.   Such natural  loss  of biodiversity is continuous and imperceptible and is a part of the natural  process  of evolution.   A study of Mukkuthala  Kavu,  a Sacred  Grove   in the Malappuram district of Kerala,  a  certain amount  of disturbance was noticed (Nair et al., 1997),  some  of which is certainly due to internal factors.  

     In  the present times, total protection of areas,  small  or big, requires heavy financial inputs.   Such protection will also defeat  the  objective of utilisation of  natural  resources  for human   welfare.    Total  protection  of  an  area  to   prevent biodiversity loss is both impossible and impracticable.     It is also  not  feasible  in the long run to  preserve  the  whole  of biodiversity in botanical/zoological gardens, green houses, etc., (Tewari,  1993).     No  matter  what we  do,  natural  and  time dependent changes in biodiversity are inevitable.   

11. CONSERVATION OF BIODIVERSITY

     Conservation is the planned management of natural resources, to retain the natural balance, diversity and evolutionary  change in  the environment (Lincoln et al., 1982).   It is a  protective measure  taken a) to prevent the loss of genetic diversity  of  a species,  b) to save a species from becoming extinct,  and c)  to protect  an ecosystem from damage so as to promote its  sustained utilisation.   

     The aims and objectives of biodiversity/species conservation programmes are: 

   a) to promote conservation of biodiversity in defined habitats and geographical areas;

   b)  to  identify components of biodiversity in  a  region  for conservation and sustainable use;

   c)  to  promote  in situ (explained  later)  conservation  and sustainable  management  of  ecosystems,  natural  habitats   and species populations;

   d)   to  establish  and  formulate  strategies  for  ex   situ (explained later) conservation for the components of biodiversity through an integrated scientific research;

   e)  to study the intrinsic and extrinsic factors  causing  the depletion  of  species/populations  and to  formulate  and  adopt scientifically oriented conservation strategies;

   f)  to  identify Biodiversity Conservation  Regions  and  'hot spot'  areas  (that  require urgent measures) in  the  world  for concentrated research and protection;

   g)  to  promote research in traditional  and  ethic  knowledge areas on, and utilisation of, natural resources, and to encourage equitable sharing of benefits arising out of utilisation of  such knowledge systems;

   h)  to  promote  research on wild relatives,  land  races  and cultivars of cultivated species; 

   i)  to  maintain database systems  on  economically  important groups  of  plant and animal species as a source  information  on them;

   j) to evolve guidelines for the management of protected  areas so as to enable the policy makers and managers to take  effective measures to conserve biodiversity and species;  and

   k)   to   disseminate  information  on   the   importance   of conservation and sustainable utilisation of biodiversity, through popular   and  scientific  publications  and  other   educational programmes.

     Since  the  criteria and action plans  differ  very  widely, often within a particular country,  depending upon the needs of a specific   situation,   no  uniform  approach   is   practicable.   Biological  conservation has its own impacts on  environment  and the  society,  which need to be addressed  carefully  before  any programme is implemented (Balakrishna, 1999).

12. MEASURES FOR CONSERVATION OF BIODIVERSITY 

          It is essential that biodiversity, particularly in  the tropical regions of the world, is conserved taking urgent  steps.   Economic gains, immediate or long range, concerning  individuals, organisations or governments are one of the important factors  in biodiversity    conservation   priorities.     Politics    follow potential  economic gains.   Countries which have the  diversity would like to gain by their natural resources.   Countries  which lack in an appreciable and/or profitable biodiversity  component, want to benefit from the biodiversity of other countries  without payment,  or with payment of minimal costs.   The fact that  most wars  were  fought for natural resources and/or  trade  in  them, should be kept in mind. 

     In  the  absence of definitive knowledge  to  determine  the component  of biodiversity that has to be conserved and of  plans and  machinery  to  effect it, the only  sensible  option  is  to monitor  a  reasonable protection to the  existing  biodiversity, till such time that priorities are determined and an action  plan emerges.  

13. OPTIONS FOR BIODIVERSITY CONSERVATION

     Options  and priorities for biodiversity  conservation  have been  discussed  at  length  in different  contexts  in  fora  at different  levels  (Chauhan, 1993;  Khoshoo,  1996).    The  same criteria also related to the medicinal plants.

     The  specimens in herbaria and musea serve only as a  record of biodiversity, as they comprise of dead material.

     The  following  options exist for the conservation  of  live material: 

    A.  EX SITU CONSERVATION
   
     a)  Complete organisms are conserved in  botanical  gardens, arboreta,  zoological  parks, zoos, etc.   It  is  impossible  to conserve  this  consciously or  unconsciously  selected  diversity permanently.

     b)   Genetic reserves in the form of single-use  wild  lands can be used to conserve the diversity of selected species.  

     c)  Biobanks provide for the conservation of pollen, seeds, sperms,  eggs, embryos, somatic cells, tissues, organs, etc.,  by various methods. 

     Ex situ conservation results in the cessation of  biological evolution and so generally provides for the conservation of  only the selected genotypes of a given time.

    B. IN SITU CONSERVATION

       a)  Multi-use wild lands to conserve biodiversity  in  the form   of  biosphere  reserves,  national   parks,   sanctuaries, watersheds, protected landscape and ethnobiological reserves.

       b)  Conserved  lands for genetic  diversity  and  man-made wilderness areas to provide for the conservation of diversity  in selected areas.

     In  situ conservation allows continued biological  evolution and  may influence changes in the component of biodiversity  from time to time and hence it is conservation of an uncertain status.

14. SUSTAINABLE USE OF BIODIVERSITY
    
     An   often   suggested  alternative   to    development   or conservation  options, is sustainable use of biodiversity,  which is  hoped to provide for a balanced utilisation and  conservation of   biodiversity.    Sustainable  utilisation  has   not   fully satisfied  either the developmentalists or the  conservationists.   In  addition, the economics vary according to the  climate,  soil conditions, topography, infrastructure (Pearce and Moran,  1994), and   the   biological   component   harboured   in   the   area.   Consequently, no universal criteria are available for sustainable use of biodiversity.  

15. CONSERVATION OF BIODIVERSITY AS A MORAL ISSUE

     Economic  values  play  an important role  in  shaping  most arguments in favour of conservation of biodiversity in  different forms  and approaches or in favour of development at the cost  of biodiversity.   An argument that conservation is a moral issue to be  determined  by  a) the 'rights' of the other species  in  the ecosystems,  b) the rights of indigenous people  and  minorities, and c) by our moral obligations to future generations in  handing over  the rich natural resource wealth as intact as possible,  is often   advanced.    This  implies  that  the   conservation   of biodiversity is an end in it self (Pearce and Moran, 1994) rather than  the means to another end.  In a number of  situations,  the moral  view  is not really opposed to the  economic  view.    But often  the  confusion between the objectives of  conservation  vs development   puts   the  governments  in   opposition   to   the environmentalists.    Since  conservation just for that  sake  is both  scientifically  impossible  and  impracticable,  a   better education, discussion and understanding of the issues involved in individual  situations  is the best means  to  avoid  meaningless conflicts that result in a wastage of time. Timely action is  the most basic approach to the problems.  

     Gupta  (1999), Sinha and Sahai (1999) and Jayal (1999)  have discussed  the  ethical issues related to  biodiversity  and  its conservation, in a greater detail.

16. CONSERVATION OF PLANT DIVERSITY OF INDIA 

     It  was estimated that there are about 1,25,000  species  of all  organisms  in  India  and  about  4,00,000  would   probably discovered  in  the  future (Gadgil,  1996).    Of  the  1,25,000 species, 85,000 are animals.   There are about 18,000 species  of angiosperms in the country.   To this number, we have to add  the species   of   algae,  fungi,   bryophytes,   pteridophytes   and gymnosperms,  even if we exclude the bacteria.    Obviously,  the estimates of species numbers in India are on the far lower  side.   Thus, we do not have dependable estimates of the number of  plant species in India.   In addition, we are not certain as to what to conserve.   Till all issues related to conservation are resolved, no meaningful conservation action is possible.

     Khoshoo  (1996)  reviewed  the  problems  and  prospects  of conservation of biodiversity in India and proposed setting up  of a  National Biodiversity Conservation Board, which  reflects  the fluidity of the situation.

17. INTERNATIONAL ORGANISATIONS FOR BIODIVERSITY CONSERVATION

  A. IUCN--THE WORLD CONSERVATION UNION

     The  International  Union  for Conservation  of  Nature  and Natural  Resources  is  the  most  important  world  body  of  74 sovereign states, 105 government agencies, 674  non-governmental organisations  and  32  affiliates, that is  concerned  with  the conservation of nature world wide.   The headquarters of the IUCN is situated at Gland, Switzerland.   Any one who is interested in conservation should be aware of the activities of the IUCN,   its organs and publications.

  B. SPECIES SURVIVAL COMMISSION

     The  Species  Survival Commission (SSC) is one  of  the  six volunteer  Commissions  within  the IUCN,  with  the  mission  to conserve   biological  diversity  by  developing  and   executing programmes to study, save, restore and manage wisely, the species and  their habitats.   SSC is the source of information for  IUCN on the conservation of species.   On behalf of the IUCN, the  SSC delivers and promotes its knowledge, advice and policies to those who  can  influence the implementation  of  conservation  action.   The SSC has its headquarters at the IUCN in Switzerland.

  a) Main goals of the SSC

     The SSC has six main goals:

     1.  to  assess  the conservation status of  and  threats  to species  world  wide,  so  as  to  generate  recommendations  and strategies;

     2.   to  identify  conservation priorities for  species  and their habitats;

     3.  to  promote the implementation of  specific  recommended actions for the survival of species;

     4.  to develop and promote policies for the conservation  of species and their habitats;  

     5.   to  enhance  the  efforts  of  individuals  working  on biodiversity conservation by linking them and providing access to an international forum;  and

     6.   to  promote an understanding of the importance  of  the conservation of species in the well-being of people.

  b) Structure of the SSC

      The SSC functions through a series of groups or Committees, under   a  ten-member  Executive  Committee  giving  an   overall direction  to the work.   The Steering Committee with 40  members serves  as  focal point for particular regions or  themes.    The Plants sub-committee gives direction and guidance to the  overall work of the Plant Specialists Groups  

     The bulk of about 7,000 members of SSC in 188 countries  are in  over  100 Specialist Groups and Task Forces,  which  are  the heart  of the SSC.   For plants there are Specialist Groups  such as Bamboo, Bryophyte, Carnivorous plants, Cycad, Conifer,  Fungi, Medicinal plant, Orchid, pteridophyte, etc.   The Medicinal Plant Specialist  Group has published in 1997, the first volume of  the Medicinal  Plant Conservation Bibliography.   There is an  Indian Subcontinent   Plant   Specialist  Group  to  deal   with   plant conservation  issues  in the Indian  subcontinent  that  includes representatives  from India, Sri Lanka, Pakistan, Bangladesh  and Nepal.  Similarly there are specialist groups for various  animal taxa.   Many of these specialist groups also publish  Newsletters and  the  SSC releases a biannual publication Species  to  inform members of the SSC of all the activities of the Commission. 

  c) Conservation activities of the SSC

     The  following  is a summary  of the  Priority  Conservation Activities of the SSC, as identified during 1997-98:

     1.  Understanding  Conservation Science:  a) the  impact  of global  change  on  species;   b)  understanding  the  ecological impacts  of  species  uses;  c) explore the  development  of  new management  approaches  and  d)  monitoring  and  evaluating   SSC initiatives.

     2.  Supporting Conservation with Science: a) publishing  the IUCN  Red  Lists  of  Threatened  Animals  and  Plants;   b)  SSC conservation  action  plans to identify  conservation  status  of species;  and    c) helping to ensure sustainability of  uses  of wild species. 

     3.  Technical Tools of Conservation:  a) tools for  species conservation  to  assist  natural  resource  managers,   decision makers and others.

     4.    Managing   and  Sharing  Species   Information:     a) biodiversity   information  management;   and  b)   communicating conservation priorities.

     5.      Technology     Transfer--Supporting     Conservation Practitioners:  training in use of conservation tools.

     6.  Supporting Implementation of International Agreements by   working closely with a) Convention on Biological Diversity (CBD),   b)  Convention  on International Trade in Endangered  Species  of Wild Flora and Fauna (CITES), c)  Trade Records Analysis of Fauna and  Flora  in Commerce (TRAFFIC), d) Rosmar Convention,  and  e) Convention on Migratory Species (CMS).     

     7.   Conserving Critical Ecosystems:  a)  conserving  oceans and   coasts,   b)  conserving  freshwater  ecosystems   and   c) conserving forests.  

     Space  constraints  prevent  any  more  elaboration  of  the activities of the IUCN and SSC here, and any further  information on  these  two  organisations  can be  had  from  the  respective offices,  on  request  (see Websites  and  e-mail  addresses,  in Appendices 39 and 40).     

  C. CONVENTION ON BIOLOGICAL DIVERSITY (CBD)

     Another organisation, the Convention on Biological Diversity (CBD),  formed  at a meeting in Rio de Jeneiro in 1992  and  came into force, with a membership of 133 countries, in December 1993.   CBD aims to protect the world's biological resources from further erosion or at least to slow that rate of erosion down.   Till CBD came  into  force,  living organisms  were  considered  a  common heritage  of the humankind, but CBD accepts them as  a  sovereign property  of the nation states.   CBD is to promote  conservation of biological diversity,  a sustainable use of its components and equitable  sharing of the resultant benefits.   Thus there  is  a difference  in  the objectives of the IUCN and  the  CBD,  though basically   both  strive  to  conserve  the  world's   biological resources.

  D.  CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES  OF       WILD FLORA AND FAUNA (CITES)

     CITES  and SSC work in co-operation with each  other.    The SSC's  Wildlife  Trade Programme provides Parties  to  CITES  and other governments and non-governmental organisations (NGOs)  with objective  and  authoritative assessments of  biological  impacts resulting from commercial trade in endangered species. CITES  has established  the international legal framework for the  prevention of trade in endangered species and for an effective regulation of trade in others.    Member states respect the recommendations  of CITES presented in CITES Appendices and implement restriction  on the trade of the listed species.   CITES Appendix I lists species that  are threatened while Appendix II includes the species  that may become threatened with extinction if trade is not  regulated.  Those  in  Appendix  III  are  species  that  require   watching.   Depending  upon  the  need, species may be shifted  from  one  to another   Appendix.    The  CITES  Appendices  are   periodically reviewed, the latest being the outcome of the Tenth Conference of the  Parties (all those concerned with trade, governments,  NGOs, and   conservation  experts)  in  June  1997  in   Harare.    The recommendations  of  the  meeting  in 1999,  have  not  yet  been available.
     
     Recently,  CITES  and  TRAFFIC  together  resolved  to  work closely  with traditional medicine communities to  a)  eventually eliminate  illegal  trade  in  endangered  species  of  medicinal plants;  b) ensure the  that appropriate national legislation  is in  place  to  control trade in parts and  derivatives  of  CITES listed  species;  c) strengthen enforcement efforts;  d)  promote forensic  identification techniques;  and e) investigate the  use of substitutes and artificial propagation  (Rosser, 1997).

  E.  TRADE  RECORDS  ANALYSIS OF FAUNA  AND  FLORA  IN  COMMERCE       (TRAFFIC)

     TRAFFIC  is  the body that monitors the volume of  trade  in endangered species and works in co-ordination with CITES and SSC, to  assess  the impact of trade, the objective  being  to  manage trade sustainably.

  F. WORLD WIDE FUND FOR NATURE (WWF)

     World   Wide  Fund  for  Nature  is  the   most   publicised conservation  organisation with centres in almost every  country.   There is one in India, WWF-India.   For most part, the activities of  WWF  were concerned with the megafauna, but in  recent  times plants are getting some attention.   In India, WWF-India has  now launched programmes for conservation of medicinal plants.

18. AUTHENTIC  REFERENCE  DOCUMENTS  ON  BIODIVERSITY  AND   ITS       CONSERVATION

  A. RED LISTS OF THREATENED SPECIES

     The  IUCN  separately  publishes  Red  Lists  of  Threatened Animals  and Plants to publicise information on the  conservation status  of  species.   

     The  Red Lists are the most comprehensive and  authoritative global  surveys  of  threatened  species  in  existence.     They identify taxa that are most threatened, thereby serving as  tools to  help to set priorities for conservation action and  providing baseline  information  for monitoring status of taxa.    The  Red Lists  provide  a framework for more specific  information  about taxa  under  threat--such  as  national  or  regional  lists  and conservation   strategies--and   alert  regions,   nations,   and communities to taxa of international conservation concern.    The Red  Lists  are  the technical resource  to  international  legal instruments  and  are frequently used to  create  and  strengthen national species protection Laws.   Periodical revisions of these lists are issued from time to time.  

     The latest version of the Red List of Threatened Animals has been released in 1996 and another version is due in 1999.  

     The  first ever IUCN Red List of Threatened Plants of  1997, containing  33,798  species names the  threatened  category,  was released  in April 1998, simultaneously from Washington,  London, Canberra  and Cape Town (Sowdowski, 1998).    The listed  species belong to 369 plant families and 200 countries.   They constitute 12.5  per  cent  of  known  species  of  vascular  plants.    The publication   of   this  list  is  a  turning  point   in   plant conservation.   A compilation Red List for Indian species, from the IUCN list, has been published  (Kameswara Rao, et al., 2003).

  B. RED DATA BOOKS

     Red Data Books of the IUCN provide in-depth analyses of  the conservation  status of particular groups of species.    Earlier, Red  Data  Books  cited  60,000  plant  species  as   endangered.   Certain  situations  of  species  make  categorisation  of  their conservation status difficult.   For example, the African Violets (Saintpaulia   ionantha)  are  the  most  popular  house   plants throughout the world.   But, a few years ago, an expedition found only three individuals in its wild habitat in Tanzania (Donellan, 1995).    The species is certainly endangered in the wild but  is abundant  in  cultivation.    Similarly, the  Indian  Asoka  tree (Saraca  asoca) has definitely become rare in the wild but  is  a common  avenue  tree in many places in the  country.    Often,  a distinction  needs  to be made between taxa that  are  threatened only  in  the wild habitats and those which are  at  total  risk.   Some  species,  such  as Tribulus terrestris,   which  are  under threat in one locality may be abundant in another. 

     Like  several other countries in the world, Red  Data  Books have  been published from India.   Unfortunately, for plants  the lists  of  threatened species have been based on the  records  of herbarium specimens of the concerned species, found in  different herbaria  in the country.   This is an unscientific criterion  as often the most abundant species comes to be sparsely  represented in  herbaria.   The Indian Red Data Books have  generally  become suspect  and questioned in International fora, as they  were  not based on valid criteria.   Consequently we need to revise the Red Data Books of Plants in India on scientific methods.    This work is  now  being  carried out at  the  Indira  Gandhi  Conservation Monitoring Centre associated to the WWF-India, at New Delhi.

19. SYSTEM OF CATEGORIES OF THREATENED SPECIES

     Species  are  assigned  to different  categories  of  threat basing on the degree of threat of extinction they face.   Over  a period of time a certain amount of confusion has crept in, in the use of the terms. The term Extinct has come to be used in a local context  (instead of global) 'as the disappearance of  a  species from  a  given  habitat  or  biota,  not  precluding   subsequent re-colonisation  from  elsewhere' (Lincoln et  al.,  1982).    The terms   'Endangered'   and  'Threatened'  have   come   to   used interchangeably, a confusion that appears to be very wide spread, as the London Zoo Authorities have accused even the World Society for the Protection of Animals (WSPA) and the Born Free Foundation (BFF)  of  such  confusion  (Donellan,  1995).    Aware  of  this situation, the SSC has reviewed the terminology and published the   IUCN  Red  List  Categories,  the  use  of  which  is   mandatory  (Anonymous,  1994).   The Red List of Threatened Animals of  1996 is   totally  according  to  these  guidelines.     Species   (or subspecific  taxa)  facing  any threat of  extinction  should  be assigned  to  one  of the following categories on  the  basis  of detailed  and  specific criteria, given by the  IUCN  (Anonymous, 1994), which needs to be consulted for details.

 I. Evaluated

 A. If adequate data are available:

   a)  Extinct (EX):  when there is no reasonable doubt that  the   last individual of the taxon has died.

   b)  Extinct in the Wild (EW):  when a taxon is known only  to  survive in cultivation, well outside the past range.

   c) Threatened:

        i) Critically Endangered (CR):  when a taxon is facing an   extremely  high risk of extinction in the wild in  the   immediate future.

       ii) Endangered  (EN):   when a taxon  is  not  critically    endangered  but  is  facing  a  very  high  risk   of    extinction in the wild in the near future.

      iii)  Vulnerable (VU):  when a taxon is facing a high  risk   in the wild in the medium term future.

   d)  Lower  Risk (LR):  when it has been  evaluated,  does  not   satisfy  the criteria of threat under the above  mentioned   categories.

        i) Conservation Dependent (cd):  when a taxon is the focus  of  a  conservation programme, the  cessation  of  the   programme  would  place the taxon  in  the  threatened  categories.

       ii) Near Threatened (nt):  when a taxon does not  qualify  for  conservation  dependent, but which are  close  to  qualifying for Vulnerable.

      iii) Least Concern (lc):  when a taxon does not qualify for  Conservation Dependent, nor near Threatened.

 B. Data  Deficient (DD):  when data are deficient  to  make  an  assessment of the risk of extinction a taxon faces.

II.  Not Evaluated  (NE):  when a taxon has not yet been assessed  against the criteria.

     In  the  new  approach, the old categories  like  Rare  (R), Indeterminate (I) and Insufficiently known (K) have been  dropped and  the  categories Threatened, Endangered and  Vulnerable  have been redefined.  The following points are to be remembered:

   a)  the  new  categories are to be  determined  based  on  the detailed  criteria  provided by the IUCN (Anonymous,  1994), 

   b) criteria are applicable to any taxon at or below the  level of  the species alone,

   c) a taxon need not meet all the criteria for being put in one of   the   categories, 

   d) Not Evaluated or Data Deficient qualification does not mean that  the  taxon  is  not  under  threat, 

   e)  the  criteria are quantitative,

   f)  conservation action is needed for some taxa even when  not listed as threatened,

   g)  the category of threat is not necessarily   sufficient  to determine priorities for conservation,

   h)  the criteria are most appropriately applied at the  global level,

   i) when the criteria and categories  are used in a national or a  regional context, the global situation also should  be  given, till the IUCN developes guidelines for national and regional  Red List categories,

   j) the categorisation of taxa is not final and it needs to  be reassessed periodically, and

   k)  taxa can be transferred from one category to  another,  if the reviewed situation warrants such a change.  

     Application  of the new criteria of the IUCN will  certainly show up that a very large number of the Indian plant species fall under  one  or the other category, but we do not have  any  solid quantitative data to support any such move right now.   Hubbardia heptaneuron  Bor  (Poaceae) was collected for the first  and  the only  time,  and described,  from the water-sprayed  rocks  under the  Gerasoppa water falls in Karnataka in the early  1930s.    A hydroelectric project involving the river has changed the habitat drastically  and  irreversibly  and  all  subsequent  efforts  to collect  this  species,  have  failed.    This  species  is   now represented only by a couple of herbarium specimens deposited  by the original author in the Herbarium of the Royal Botanic  Garden at Kew, England.   Almost certainly Hubbardia heptaneuron is  now extinct (EX).   Paphiopedilum druryi, an endemic Indian  species, was first reported in 1865 and was not collected again till 1974, and  once more in 1992 from the wild.   This species falls  under the category of Critically Endangered (ER).   Most of the  Indian taxa fall into either Data Deficient (DD) or Not Evaluated  (NE), which does not mean that they are not at risk, but a very sad and inadequate situation from the scientific point of view.

     The 1994 version of the structure of categories of threat to plants  has  been reviewed recently by the  SSC  Criteria  Review Working  Group  (Anonymous, 1999), but it would  take  some  time before the revised version is released for use.

 
20. CITES APPENDICES

     CITES  periodically  reviews  the  situation  of  trade   in threatened  plants  and  animals and  publishes  lists  of  trade restricted species in three Appendices, the degree of restriction being  most severe for those in the Appendix I.    Some  examples are given below:

Appendix   I:  Soussurea lappa
               Cycas beddomei

Appendix II:   Cyathea species  (tree ferns)
               Orchidaceae--many species
               Podophyllum hexandrum
               Rauvolfia serpentina
               Dioscorea deltoidea
               Nardostachys grandiflora
               Picrorrhiza kurrooa
               Taxus wallichiana

Appendix III:  Mecanopsis regia
               Cycas pectinata

     CITES  and  TRAFFIC provide the means for  an  international control of trade in the listed organisms but trade in them within a country is the responsibility of the respective Governments.

21. ACTS OF GOVERNMENT

     Every   country,  based  on  the  recommendations   of   the international  organisations  concerned  with  biodiversity   and conservation,  have  enacted  Laws to  protect  their  biological resources.    The  following Acts of the Government of  India  are meant to regulate the natural resources:

Forests Acts:

   a) The Indian Forest Act, 1927
   b) The Forest (Conservation) Act, 1980
   c) The Forest (Conservation) Rules, 1981

Wildlife Protection Acts:

   a) The Wildlife (Protection) Act, 1972, as amended up to 1993
   b) The Wildlife (Transactions and Taxidermy) Rules, 1973
   c) The Wildlife (Stock Declaration) Central Rules, 1973
   d) The Wildlife (Protection) Licensing (Additional matters for consideration) Rules, 1983
   e) The Wildlife (Protection) Rules, 1995
   f) The Wildlife (Specified plants--conditions for  possession by License) Rules, 1995 
   g) Biodiversity bill 2003

     There are also Environment Protection Acts, and a Biodiversity Bill.    

     These Acts are the basis for the protection of the flora and fauna of the country.   Within the framework of the  legislation, 75  National  Parks and 421 Wildlife Sanctuaries, which  are  the protected  areas,  have been organised in  the  country.    Joshi (1993) and Tewari (1993) have provided the details of some of the preservation plots and protected areas in India.   Unfortunately, the emphasis in these National Parks and Wildlife Sanctuaries  is on  the megafauna such as the tiger, lion, elephant, bison,  etc.   Plants  have  had  a very raw deal.   In fact,  in  some  of  the protected  areas,  damage  to the vegetation  by  the  inhabiting animals,  is  much more than in the area  outside  the  protected premises.   The Wildlife (Protection) Act, 1972, in the amendment of  1991,  listed only one gymnosperm and  five  angiosperms  for protection,  for  the first time, that too in Schedule  VI  which affords  the least protection (Mohanraj and  Veenakumari,  1996).   The  fault  lies not with the Government of India, but  with  the scientific community of the country which failed to impress  upon the  Government  on  the  need for  a  rational,  scientific  and realistic approach to the issue.

     We need to specify the areas and/or particular species to be protected.    Before any habitats or plant species are recommended for  inclusion in the Schedules of the Wildlife  Protection  Act,  we  should  study the concerned species in detail,  as  once  the stringent Laws clamp down protection on the habitats/species,  no manipulative studies can be conducted on them.  

     We  urgently  need to draw up a list of plant  species  that require   protection  through  legislation.    In  some   western countries,  nothing can be collected from notified areas  and  in some   others  collection  of  certain  species  is   prohibited.   Legislation should be made to provide such protection to selected habitats and species.  

     It  is  certainly  not  enough if  a  legislation  is  merely enacted.   The public should also show awareness of the situation and  be  vigilant  and participate  in  protecting  the  notified areas/species, as happens in the western countries.   Probably it is too much to expect from a largely illiterate population and  a self-centered and corrupt rest.

22. MONITORING BIODIVERSITY

     Monitoring biodiversity means repeated recording with  clear objectives, using a standardised approach and rules, not only for monitoring  but  also for stopping such  recording.    Monitoring biodiversity is a part of conservation packages.   Procedures for monitoring  have  been  discussed  repeatedly  (Goldsmith,  1991, 1993a,   1993b).    The  following  aspects  of  monitoring  were suggested to be priorised:

   a)  to record the integrity of sites such as  nature  reserves and national parks, a process called Site Integrity Monitoring;

   b)  to  ensure  that the quality of such sites  is  maintained (Site Quality Monitoring);

   c) record the long term ecological effects of climatic change;

   d) detect the effects of over-grazing,  pollution, irrigation, salinisation, etc.;

   e)  record  the  changes in the numbers  and  distribution  of species,  particularly the rare ones,  such as endemics, orchids, etc.;   and

   f)  to  keep a tally of richness or diversity of  the  biotopes which we value.

     In England, the Nature Conservancy Council takes the help of the  informed  public  who  volunteer  to  make  periodical   and systematic record of the density of populations of species in the wild  habitats.    These  records form the basis  to  assess  the changes in the species density and distribution.   This helps  in monitoring  biodiversity in terms of habitats  and/or  individual species.   India being so vast in area and the number of species, needs  such public support which can probably be drawn from  high school or college students after imparting basic training.   Such a suggestion, in a different context, was made by Gadgil (1996). 

     A  Status  Survey is needed to  determine  the  conservation status  and needs of individual species and habitats.   A  Survey is  a  one time recording.   Surveillance  is  repeated  surveys.   Census is repeated recording of population densities of a  single species including fluxes of births and deaths.   Clearly a lot of planned work is involved in monitoring biodiversity.

     Goldsmith  (1993b)  advocated  that  priorities  should   be established  before rushing to monitor ecosystems  and  suggested the following:

   a)   Conservation   evaluation:   species   of   international importance  take  priority  over those  of  national  importance.   These  in  turn take priority over those of  regional  importance which take priority over those of local importance;

   b)  Sensitivity:   this reflects the inherent  sensitivity  of some  species  or  biotopes and should take  priority  over  more robust ones;

   c)  Vulnerability:   this  reflects  the  resilience  of  some species  and  biotopes to external forces  such  as  desiccation, salinisation, over-grazing, pollution, etc.;

   d)  Simplicity:  if the monitoring procedures are  simple  and easy  to  carry  out,  it is more likely  to  be  conducted  than otherwise.    Also, it is more likely to be continued when  staff change or funding becomes difficult;  and

   e) Cost effectiveness:  inexpensive monitoring programmes  are more likely to run until completion than expensive ones.

     In order to evaluate the biotopes or species being  studied, it  is  necessary  to  have  extensive  survey  data  for   other comparable areas to set the target one in context.   Estimates of man  power  and  costs are important as also  the  techniques  of gathering and recording data.

   If  we  compare the global situation with that in  India,  the distressing  and inescapable conclusion would be that we did  not even  make  a  beginning of understanding the  magnitude  of  our biodiversity conservation problems.

REFERENCES

Anonymous.   1994.   IUCN  Red  List  Categories.   IUCN,  Gland,     Switzerland.

Anonymous.   1999.   IUCN RED List  Criteria  Review  Provisional    Report:  Draft  of  the  proposed  changes  and  recommendations.     Species, 31-32:43-57.

Ayensu,  S.E.   1986.   World  medicinal  plant  resources.    In    Conservation  for  productive agriculture.  (eds.)  Chopra,  V.L.       and Khoshoo, T.N.  ICAR, New Delhi.  pp 11-49.

Balakrishna,  P.   1999.   Biological  conservation  and   impact    assessment.  Curr. Sci., 76:129-131.

Chauhan,  K.P.S.   1993.   Research options  and  priorities  for         Biodiversity   conservation: Forests,   wetlands   and   deserts.             (eds.)  Frame,  B., Victor, J. and Joshi, Y.   TERI,  New  Delhi.     pp 26-33.

Cunningham,   A.B.,   Schippmann,  U.  and  Leaman,   D.    1997.       Medicinal Plant Specialist Group.  Species, 29:56-57.

Donellan, C.  1995.   Endangered species.  Vol. I.  Independence,    Cambridge.

Gadgil,  M.   1996.  Deploying student power to  monitor  India's    lifescape.  Curr. Sci., 71:688-697.

Goldsmith,  F.B.   1991. (ed.) Monitoring  for  conservation  and    ecology.  Chapman and Hall, London.

Goldsmith,   F.B.  1993a.   Monitoring  for   conservation.    In    Conservation  in  progress.  (eds.) Goldsmith, F.B.  and  Warren,    A.  Wiley, Chichester, UK.

Goldsmith,    F.B.    1993b.    Monitoring   biodiversity.     In    Biodiversity   conservation:  Forests,   wetlands   and    deserts.     (eds.)   Frame,  B., Victor, J. and Joshi, Y.   TERI,  New  York.     pp 16-19.

Gupta,  A.K.   1999.   Ethical dilemmas in  the  conservation  of    biodiversity.   In  Biotechnology, Biosafety,  and  Biodiversity.     (eds.)    Shantharam,   S.   and   Montgomery,   J.F.     Science    publishers, Inc., New Hampshire.  pp 91-128. 

Hawkes,  J.G.   1978.  The taxonomist's role in  conservation  of    genetic   diversity.   In  Essays  in  plant   taxonomy.    (ed.)    Street, H.E.  Academic Press, New York.  pp 125-142.

Humboldt,  baron,  A. von.  1807.  Essai sur  la  Geographie  des    plantes. Paris.

Hunter,  J.B.   1986.  Studies on the agglutinins  in  Artocarpus    altilis  and  Ficus  deltoidea.   M.Sc.,  thesis,  university  of    Alberta, Edmonton, Canada.

James,  A.N.,  Gastson, K.J. and Balmford, A.   1999.   Balancing the Earth's accounts.  Nature, 401:323-324.

Jayal,  N.G.  1999.  Ethics and biodiversity.  In  Biotechnology,    Biosafety,  and  Biodiversity.      (eds.)  Shantharam,  S.   and    Montgomery,  J.F.   Science    publishers, Inc.,  New  Hampshire.     pp 161-176.

Joshi,  N.K.  1993.  Networking for conservation of  biodiversity    in  India.   In Biodiversity conservation: Forests,  wetlands  and    deserts.      (eds.)   Frame,  B.,  Victor,  j.  and  Joshi,   Y.     TERI, New York.  pp 111-120.

Kameswara Rao, C.  2000.   Database of medicinal plants.   Karnataka State Council of Science and Technology,  Bangalore.

Kameswara Rao, C., Geetha, B.L., and Geetha Suresh.  2003.  Red list of threatened vascular plant species in India.   Ministry of Environment and Forests, Government of India, Botanical Survey of India, Howrah.

Khoshoo,  T.N.   1996.   India  needs  a  National   Biodiversity    Conservation Board.  Curr. Sci., 71:506-513.

Lincoln,   R.J.,  Boxshall,  G.A.  and  Clark,  P.F.   1982.    A    dictionary  of  ecology, evolution  and  systematics.   Cambridge    University Press, Cambridge.

May, R.M.  1990.   Nature, 347:129-130.

Mohanraj,   P.   and  Veenakumari,   K.    1996.    Nomenclature,    classification   and  the  basis  of  Schedules  in  the   Indian    Wildlife (Protection) Act, 1972.   Curr. Sci., 70:428-432.

Myers,  N.   1988.   Threatened biotas:  'hotspots'  in  tropical forests.  Environmentalist, 8:187-208.

Myers,  N.  1990.  The biodiversity challenge:  expanded  hotspot analysis.  Environmentalist, 10:243-256.

Myers,  N.   1999.   Lifting  the  veil  on  perverse  subsidies.  Nature, 392:327-328.

Myers,  N.,  Mittermeler, R.A., Mittermeler,  C.G.,  da  Fonseca, G.A.B.   and   Kent,  J.   2000.    Biodiversity   hotspots   for conservation priorities.  Nature, 403:853-858.

Nair,   G.H.,  Gopikumar,  K.,  Pramod,  G.,  Krishnan,  K.   and    Sushilkumar,  K.K.   1997.   Sacred  groves  of  India--vanishing    greeneries.  Curr. Sci., 2:697-698.

Pearce,   D.  and  Moran,  D.   1994.   The  economic  value   of    biodiversity.  Earthscan  Publications, London.

Pimm,  S.L.  and  Raven,  P.H.   2000.   Extinction  by  numbers.  Nature, 403:843-845.

Potter,  D.  1996.  NGOs and environmental policies  in Asia  and    Africa.  Frank Cell, London.  

Reid,  W.V. and Miller, K.R.  1989.  Keeping options  alive:  The    scientific  basis for conserving biodiversity.   World  Resources    Institute, Washington, D.C.

Rosser,  A.  1997.  Report on CITES, the Tenth Conference of  the    Parties.  Species, 29:25-28.

Sadowski,  M.   1998.   First Ever IUCN Red  List  of  Threatened    Plants.  Species, 30:22-25.

Sinha, S.K. and Sahai, S.  1999.  Biodiversity and biotechnology:    Ethical  issues  in  developing  countries.   In   Biotechnology,       Biosafety,  and  Biodiversity.      (eds.)  Shantharam,  S.   and       Montgomery,  J.F.   Science    publishers, Inc.,  New  Hampshire.     pp 157-160.

Tewari,   D.N.    1993.   Conservation   of   biodiversity.    In    Biodiversity   conservation: Forests,   wetlands   and    deserts.     (eds.)  Frame,  B., Victor, J. and Joshi, Y.   TERI,  New  Delhi.     pp 9-13.

Wilson,  E.O.  1988.  The current state of biological  diversity.     In    Biodiversity.   (ed.)  Wilson,  E.O.    National   Academy,    Washington, D.C.  pp 3-20.

  ------0000000------